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Site-Bond Percolation Problems 
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We study a percolation process in which both sites and bonds are randomly 
blocked, independent of each other. In the Bethe lattice, the exact solution for 
the percolation threshold is found to be a hyperbola in the x-p  plane, where x 
and p are the respective probabilities of each site arid bond being unblocked. 
Percolation threshold for a square and a simple cubic lattice is obtained by 
computer simulation. We also present a result obtained by a real-space renor- 
malization group technique for the square lattice. 
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1. I N T R O D U C T I O N  

The percolat ion model  has achieved certain success in explaining some 
physical properties of r andom systems. (0 Usually, the percolat ion model  in 
a lattice is classified into two categories, namely, site model  and  bond  
model.  In  the former  model  sites are r andomly  blocked, and in the latter 
bonds  are r andomly  blocked. Some real physical systems, however, have 
blockage in both sites and bonds, where unbroken  bonds  act as communi-  
cat ion links between unblocked sites. For  example, Ising model  with 
r andomly  missing spins and  vanishing exchange interactions, and the 
problem of spreading of epidemic diseases are considered to be among  this 
kind of problem. In  fact, there have been several works on s i t e -bond  
percolat ion problem where sites and  bonds  are r andomly  blocked, indepen- 
dent  of each other, with probabilities (1 - x) and (1 - p), respectively. The 
dependence  of critical temperature on s i t e -bond  occupat ion probabilities 
for a Heisenberg ferromagnet  on a fcc lattice was studied by Brown et al. (2) 
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using the ratio and Pad6 approximant methods. Low-density series expan- 
sion method was used by Agrawal et al. (3~ to study uncorrelated site-bond 
percolation on a square lattice. Hoshen et al. (4) studied the site-bond 
percolation problem in a square lattice by computer simulation. Their 
results for the percolation threshold showed large fluctuations possibly due 
to their criterion for percolation. Similar Monte Carlo methods have been 
used by Heermann and Stauffer (5) and Ottavi (6~ in studying Ising-like 
correlated site-bond percolation in a simple cubic lattice and a square 
lattice. Using a generalized star-triangle transformation, Kondor (v~ ob- 
tained explicit formulas for the site-bond percolation threshold for triangu- 
lar and honeycomb lattices. Coniglio and Klein (8) and Wu (9) established 
the connection between the dilute Potts model and the site-bond percola- 
tion problem. Furthermore, McGurn (1~ presented a technique to map 
site-bond disorder problems on Ising systems onto a certain class of 
decorated lattice problems. He used the zero-temperature magnetization to 
obtain an approximation to the percolation probability and deduced the 
site-bond percolation threshold for the honeycomb lattice. A correlated 
site-bond percolation model has also been used in the study of polymer 
gelation.(ll'121 

In this paper, we study the uncorrelated site-bond percolation prob- 
lem in the Bethe lattice, the square, and the simple cubic lattices. In Section 
2 we derive the exact solution to the site-bond percolation problem in the 
Bethe lattice. We shall follow closely the generating function technique (13~ 
and show that the percolation threshold in the x - p  plane is given by a 
hyperbola xp = 1/o, where z = cr + 1 is the coordination number of the 
Bethe lattice. We call this threshold the critical percolation hyperbola. This 
hyperbola is in fact the infinite temperature limit of the gelation threshold 
Eq. (6) of Ref. 11 obtained there by a different method. We study in 
Section 3 the site-bond percolation model in the square and simple cubic 
lattices using a Monte Carlo technique. In the simple cubic lattice, the 
percolation transition line in the x - p  plane exhibits hyperbolic behavior. In 
Section 4, we discuss similarities and differences with earlier results and 
mention a result obtained by a real-space renormalization group technique 
for the square lattice. 

2. THE BETHE LATTICE 

We define a cluster as a set of unblocked sites linked to one another 
through unbroken bonds. A cluster can be characterized by its size and 
number of perimeters isolating the cluster. The cluster size is measured by 
the number of sites it contains. (We can also use the number of bonds in 
the cluster to measure the cluster size, but results should be independent of 
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definition.) The perimeters of a cluster in the si te-bond percolation prob- 
lem can be either broken bonds or blocked sites. A cluster can be isolated 
in two ways: (a) bond is unbroken but site is not, probability of which is 
py; (b) bond is broken, probability of which is q. 

Here, y = 1 - x is the probability of a blocked site and q = 1 - p is 
the probability of a broken bond. Thus, the probability of having a cluster 
of size s with t perimeters is given by 

x ~ - , ( p y  + q)t (2.1) 

Note the exponent s - 1 o fp  since the number of bonds inside the cluster is 
always one less than the cluster size for the Bethe lattice. 

Denote by as, , the number of distinct clusters of size s and perimeter t 
which contain a given site. Then the probability of an unblocked site 
belonging to such clusters is given by 

as,,XSpS-'(py + q)' (2.2) 

The topological degeneracy factor as, t does not depend on the model one is 
using. 

The total probability that a site belongs to a finite size cluster is then 

F(x ,  p)  = ~_,as, , 1 (xp)S(1 _ xp) '  (2.3) 
s,l F 

The percolation probability that a site belongs to an infinite cluster will be 

R (x,  t 7) = x - g ( x ,  17) (2.4) 

We note that below a certain percolation threshold, all clusters are of 
finite size and the total probability of a site belonging to a finite cluster is 
simply the probability that the site is unblocked. Consequently, we must 
have 

F(x ,  p)  = x (2.5) 

Therefore, the percolation threshold is defined as i n f ( x l R ( x ,  p ) >  0) for 
any17 in [0, 1], or equivalently inf{17[R(x,  p) > 0) for any x in [0, 1]. 

Now we define the generating function 

A ( u , v )  := ~as,tuSv t (2.6) 

so that 

F ( x ,  p)  = 1 A (xp, 1 - xp) 
P 

We further define a configurational generating function 

1 
K(u ,v )  := ~2 sa~,,uSv ' 

s,t 

(2.7) 

(2.8) 
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which gives the relation 

3K(u ,v )  
a ( u , v )  = u 3u (2.9) 

For the Bethe lattice, a unique relation between s and t exists, 

t = s ( o -  1) + 2 (2.10) 

where o = z -  1 is the connectivity of the lattice. Using this relation, we 
can rewrite the configurational generating function (2.8) as 

K(u,v)  = v % ( n )  (2.11) 

where n = uv~ and Bo(n) is the fundamental Bethe lattice generating 
function given by 

Bo(n) = ~ las,,n~ (2.12) 
s, t  S 

The explicit form of the fundamental Bethe generating function is known 
to be (13,14) 

2P* - (o + 1)P .2 
 o(n) = 2(1 - e * )  2 (2.13) 

where P*(n) is a solution to 

P*(1 - e , ) ~ - l =  n (2.14) 

satisfying 

lira P*(n) = 0 (2.15) 
T/---~0 

Equations (2.5), (2.9), and (2.11) lead to 

F(x ,  p) = x(1 - xp) ~ aB~ (2.16) 
,IT 

where the derivative is evaluated at 

n = xp( l  - xp) 0-1 (2.17) 

After a simple algebraic manipulation, the density of finite clusters Eq. 
(2.16) is reducible to 

P * ( 1 - x p )  2 
F(x ,  p)  = - 7  1 P* (2.18) 
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Fig. 1. Perspective view of the s i t e -bond  percolation probabili ty for the Bethe lattice with 
coordinat ion n u m b e r  z = 4. x and p are the probabili ty of a site and a bond being unblocked, 
respectively. 

and  hence that  of infinite cluster is reduced to 

R(x,  e ) =  x 1 - ~ 1 - e*  (2.19t 

Not ing  that  ~/defined in Eq. (2.17) as a funct ion of xp attains its m a x i m u m  
value at  xp = 1 /o ,  we have, f rom Eqs. (2.14), (2.15), and  (2.17), 

P *  = x p  (2.20) 

when x p < l / o .  W h e n  xp>  1 /o ,  we find P * = l - x p  for o = 2 ,  and  
P* = {2 - xp - [xp(4 - 3xp)]W2}/2 for o = 3 and  so forth. Figure 1 shows 
the perspect ive view of the percola t ion probabi l i ty  surface R(x, t )) calcu- 
la ted through Eq. (2.19) for z = 4. The  percolat ion threshold defined below 
Eq. (2.5) is found  to be  a hyperbo la  (x1))c = 1 /o .  If we set x = 1 (p  = 1), 
this hyperbo la  correctly reduces to the usual critical percola t ion probabil i -  
ties for the pure  b o n d  (site) problem,  namely,  Pc = 1 / o  (xc = 1 /o) .  The  
critical percola t ion hyperbo la  for  var ious o is plot ted in Fig. 2. 
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Fig. 2. Percolation threshold of the site-bond percolation problem in the Bethe lattice with 
various connectivities. Note the connectivity o is one less than the coordination number z. 

The mean  cluster size is defined as 

~sG,t(1/p)(xp)S(1 - xp) ~ 
S(x,p) = ,,t (2.21) 

e(x, p) 

Using the generating funct ion Bo(~), we can rewrite it as 

S(x,p)= I + P*(1- P*)~-] ( d [ dB~(rl) l} dP* =xp(l_xp)~ " d--~ - ln  d~ " --d~-~ 

Further  simplification gives 

1 + P* (2.22) S(x, p ) -  1 -  aP* 
The mean cluster size S(x, p) diverges on the critical percolation hyper- 
bola. Critical indices of the percolation probabil i ty and the mean  cluster 
size are the same as that of the pure site or bond  problem and do not  
depend on how one approaches  the critical hyperbola.  

3. SQUARE AND SIMPLE CUBIC LATTICES 

In  this section we present results of computer  simulation on the 
s i t e -bond  percolation threshold for square (100 • 100) and simple cubic 
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(20 X 20 • 20) lattices with fixed boundary conditions. We first used a 
pseudorandom number generator to generate randomly distributed blocked 
sites and broken bonds. Then, we connected two adjacent unblocked sites if 
they shared a common unbroken bond. The system was assumed to have 
an "infinite" cluster if there exists at least one connected channel of 
unblocked sites which extends from one edge to the opposite edge of the 
square lattice (for the simple cubic lattice, from one face to the opposite 
face). We changed the probability x (or p) for a given p (or x) by a step size 
0.001. The critical percolation probability x c for a given p (or pc for a given 
x) was determined as the smallest x (or p) where the system has an infinite 
cluster. For  the square lattice, we ran five samples, and for the simple cubic 
lattice, 10 samples. The percolation threshold was determined as an average 
of critical probabilities over these samples. 

The solid circles in Fig. 3 show the percolation threshold for the square 
a n d  simple cubic lattices determined by the foregoing procedure. The 

standard deviation for the square lattice is at most 0.01, within the size of 
the solid circles. For the simple cubic lattice, the standard deviations are 
shown by bars through the solid circles. When p = 1 or x = 1, the present 
results shown in Table I agree with the values for the pure site or bond 
problem known in the literature (15) to within 1%. In Fig. 3, we also show 
data obtained by other authors for comparison. 

The critical percolation line appears to be fitted by a hyperbola 

(x - 0.123)(p + 0.069) = 0.499 (3.1) 

for the square lattice and 

(x - 0.054)(p + 0.036) = 0.270 (3.2) 

for the simple cubic lattice. They are shown by the solid curves in Fig. 3. 
The fitting of the hyperbola was done using the two end points (i.e., the 
pure site or bond case) and the point on the diagonal x = p. However, the 
fitting for the square lattice is not as good as that for the simple cubic 
lattice. 

Table I. Percolation threshold for the pure site and bond problems. 

Square Simple cubic 

Bond Site Bond Site 

Ref. 15 0.500 ~ 0.593 0.249 0.311 
Present 0.500 _+ 0.005 0.586 _+ 0.008 0.249 _+ 0.010 0.315 + 0.011 

result 

"Exact result. 
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Fig, 3. Percolation threshold of the site-bond percolation problem in the square and simple 
cubic lattices. Solid circles are the results obtained by present computer simulation and bars 
denote the standard deviation. For the square lattice, the standard deviation is within the size 
of the solid circle. Solid lines are hyperbolas which interpolate data at three points as 
explained in the text. The broken line is the fixed point solution to Eq. (4.1) obtained from a 
real space renormalization group for the square lattice. For comparison, results found by 
Agrawal eta/.  (3) ([[]) and Ottavi (6) (O) for the square lattice, and Heermann and Stauffer (s) 
(A) for the simple cubic lattice are shown. Open circles are extracted from the continuous 
curve shown in Fig. 2 of Ref. 6 and open squares and triangles are typical data shown in Fig. 1 
of Ref. 3 and Fig. 1 of Ref. 5, respectively. 

4. DISCUSSION 

W e  have  s tudied in this pape r  the s i t e - b o n d  pe rco la t ion  p r o b l e m  in 
the Bethe lattice,  the square,  and  the s imple cubic  lattices. W e  ob ta ined  the 
exact  result  of the pe rco la t ion  p robab i l i ty ,  the pe rco la t ion  threshold  and  the 
m e a n  cluster size for the Bethe lattice.  The  pe rco la t ion  threshold  is shown 
to be  a h y p e r b o l a  ( x p )  c - 1 / a .  Therefore ,  sites and  b o n d s  in the Bethe 
lat t ice p l ay  a symmetr ic  role in the pe rco la t ion  process.  Our  result  agrees 
with Eq. (6) of Ref.  11 in the case of a single m o n o m e r  chain  at  the infini te  
t empera tu re  limit. Cri t ical  indices  for the pe rco la t ion  p robab i l i t y  a n d  the 
mean  cluster  size at  the threshold  are  the same as the pure  site or  b o n d  
p r ob l em in the Bethe lattice,  ind ica t ing  the s i t e - b o n d  universal i ty .  

F o r  the square and  s imple cubic  lattices,  we ob t a ined  the s i t e - b o n d  
perco la t ion  threshold  by  mak ing  use of compu te r  s imulat ion.  The  present  



Site-Bond Percolation Problems 515 

result for the square and simple cubic lattices are in good agreement with 
results obtained in Ref. 3, 5, and 6. Our data for the square lattice as well 
as for the simple cubic lattice can be fitted by a hyperbola. Such hyperbolic 
behavior was conjectured by Heermann and Stauffer. (5) The hyperbolic 
behavior of the site-bond percolation threshold does not manifest itself in 
the case of the honeycomb and triangular lattices as was shown by 
Kondor. (7) We shall see later that the real-space renormalization group 
technique does not give hyperbolic percolation threshold for the square 
lattice. According to the scaling theory, (15) both the pure site and bond 
percolation threshold in the d-dimensional hypercubic lattice are given by 
1 / ( 2 d -  1)-- 1 / ( z -  1) as the dimensionality d becomes large. This coin- 
cides with the critical probability for the pure site or bond percolation in 
the Bethe lattice. We expect, thus, the hyperbolic nature of the site-bond 
percolation threshold will hold asymptotically for the hypercubic lattice in 
higher dimensions. 

Finally, we mention a result for the square lattice predicted by a real 
space renormalization group. We generalized the renormalization transfor- 
mation used by Reynolds et al. [Fig. 3(a) in Ref. 16] for the pure bond 
percolation to the site-bond problem. The real-space renormalization 
group transformation leads to 

p 'x '= p2x212 + 2px(1 - p )  -p2x2(3 -- 2p) l (4.1) 

where p' and x' are the rescaled probabilities. The fixed point solution to 
Eq. (4.1) is given by 

xp = 2 / [ 1  + (13 - 8p) '/2] (4.2) 

which is shown by the broken line in Fig. 3. It gives Pc = 0.500 when x = 1 
and x c = ( , f5--  1)/2~0.618 when p = 1. The solution (4.2) is in good 
agreement with the result of our computer simulation when p ~< 0.8 and 
somewhat deviates when p ~> 0.8. 

It should be mentioned that Eq. (4.1) is identical to Eq. (2) of Ref. 17. 
The recursion equation (4.1) has been derived by requiring that a classical 
fluid can go through the cell either horizontally or vertically. We consider 
this condition sufficient to determine the critical line. In fact, Eq. (4.1) 
reduced to Eq. (12) of Ref. 16 for pure bond case and to Eq. (4.4) of Ref. 
18 for pure site case. 
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